If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x=48
We move all terms to the left:
x^2-40x-(48)=0
a = 1; b = -40; c = -48;
Δ = b2-4ac
Δ = -402-4·1·(-48)
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16\sqrt{7}}{2*1}=\frac{40-16\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16\sqrt{7}}{2*1}=\frac{40+16\sqrt{7}}{2} $
| x+27=13-6x | | 3(x-72)=x+12 | | 15-d=6 | | 5m+10=-8 | | 1+2x=7+3x | | -16d+80=48 | | -7-3x=3-2x | | 0.4(x+3/2)=1.25 | | Y=x-0.15x | | x-2+x-3=37 | | -7.1z+1.69=-7.2z | | 15-8x=-11-6x | | 35x-10=150 | | C=15m+5 | | -4v(v+3=-12-4v | | 12.6h+12.68+6.4h=14h+10.68 | | -4.6+0.6x=0.02 | | 12-3x=-10-x | | 10x-35=150 | | -7r=-18-9r | | x-2+x=3=37 | | -6u-7=6+7u | | 8v=34 | | -17-7y=20+11-3y | | 2+n=14 | | c-2c-6=9+2c | | 6x-16=5x-6 | | 3x+10=7x-30 | | 13x-25=6(8)+14 | | 2x-30=x+13 | | -2+6x=3+7x | | -36=7z-8 |